Journal of Organometallic Chemistry, 175 (1979) 257-271 © Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

> LES REACTIONS DE REDISTRIBUTION DANS LA CHIMIE DU BORE. ETUDE DES REACTIONS DE COMPETITION DES GROUPEMENTS NMe₂, C1, SMe, OMe, F SUR DES CENTRES BORE MONO ET DIFONCTION-NELS R₂B- ET RB<

J.P. Costes, G. Cros et J.P. Laurent, Laboratoire de Chimie de Coordination, Associé à l'Université Paul Sabatier, 205 route de Narbonne, 31400 Toulouse (France). (Reçu le 7 mai 1979)

RESUME :

Les équilibres de redistribution mettant en compétition le groupement NMe₂ avec les substituants Cl, SMe, OMe et F sur des centres bore mono et difonctionnels R₂B- et RB< ont été étudiés quantitativement par RMN ¹H et ¹¹B. L'examen des constantes "inter-système" montre que le groupement NMe₂ manifeste une affinité préférentielle pour le centre le plus alkylé. Une échelle des affinités relatives est proposée.

ABSTRACT :

A quantitative 1 H and 11 B NMR study of the redistribution equilibria between the NMe₂ group and the Cl, SMe,OMe and F substituents on the mono and difunctional boron centers (R₂B- and RB<) is reported. The preferential affinity of the amino group towards dialkylated boron centers is shown by the examination of the "intersystem" constant sets. A relative affinity scale is proposed.

INTRODUCTION

Les résultats que nous rapportons ici, s'insèrent dans le cadre plus vaste d'une étude systématique des équilibres de redistribution sur des atomes de bore à partir des données des spectrographies R.M.N. ¹H et ¹¹B⁽¹⁾ Ainsi, récemment⁽²⁾ nous avons décrit les équilibres mettant en jeu les échanges des groupements monofonctionnels chlore, fluor et alkoxy sur des centres bore mono et difonctionnels, ce qui nous a permis de mettre en évidence une affinité préférentielle de l'atome de chlore pour le centre le plus alkylé R_2B . De tels comportements traduisent la non-additivité des énergies des liaisons B-X dans les series $R_n BX_{3-n}$ quand n varie. Le phénomène est particulièrement prononcé dans la série $R_n B(NE_2)_{3-n}$ où nous avons pu mettre en évidence une stabilité plus grande du terme monoaminé comparativement à celle du terme diaminé au cours des processus de redistribution⁽³⁾

Il nous a donc paru intéressant d'entreprendre une étude quantitative des équilibres mettant en compétition des groupements NMe_2 avec les substituants SMe, OMe, Cl et F sur des centres bore mono et difonctionnels dans les systèmes $Pr_2 B NMe_2/Pr B(SMe)_2 - Pr B(NMe_2)_2/Pr_2B(SMe)$; $Pr B(NMe_2)_2/Pr_2 B OMe$; $Pr B (NMe_2)_2/Pr_2 B Cl et Pr_2 B NMe_2/Bu B F_2$.

ANALYSE DES RESULTATS

Le formalisme utilisé ayant été déjà présenté⁽⁴⁾ nous rappelerons briévement que l'échange de 2 ligands X et Y monofonctionnels sur des centres B et B' de fonctionnalité différente v et v' est décrit par :

- un jeu de v + v'-2 constantes relatives aux équilibres

 $2 BX_{v-i}Y_i \rightleftharpoons BX_{v-i+1}Y_{i-1} + BX_{v-i-1}Y_{i+1}$

concernant les échanges sur les centres de même nature dans les deux sous systèmes $\{B_{i,j}; X/Y\}$ et $\{B_{i,j}^{i}; X/Y\}$

- et une constante intersystème $K_{I}(B_{v}/B_{v}') X/Y$ exprimant la distribution des groupements X et Y sur les centres B_{v} et B_{v}' , et correspondant à un équilibre du type

v^BBY, + ν^BY, + ν

Les systèmes que nous nous proposons d'étudier sont du type RBX_2/R_2BY ; ils seront définis par une constante intersystème $K(B_{II}/B_I)(X/Y)$ et une constante $K(B_{II})$ relative au sous système RBX_2/PBY_2 .

La détermination de ces constantes repose sur l'analyse du contenu des différents mélanges à l'équilibre dont la composition initiale est définie par l'un des rapports

$$R_{\chi} = \frac{(\chi)}{(RB < + R_2B^{-})} \qquad \text{ou} \qquad R_{\gamma} = \frac{(\gamma)}{(RB < + R_2B^{-})}$$

Pour explorer tout le domaine de composition il est nécessaire de préparer : - d'une part des mélanges $RBX_2 + R_2BY$ pour lesquels $0 \le R_x \le 2$ et $0 \le R_y \le 1$ - d'autre part des mélanges $RBY_2 + R_2BX$ pour lesquels $0 \le R_x \le 1$ et $0 \le R_y \le 2$ Les deux zones explorées se recouvrent uniquement quand $R_x = \frac{2}{3}$ soit $(X) = \{Y\}$

258

- Avant d'exposer nos résultats, nous devons signaler que dans la chimie du bore, les équilibres sont souvent fortement déplacés par rapport à un modèle de récartition purement statistique. De ce fait, certaines espèces sont très défavorisées et en concentration trop faible pour pouvoir être estimées à partir de l'analyse par spectrographie R.M.N. Dans ces cas seule une valeur limite peut être proposée pour les constantes caractéristiques.
- Par ailleurs toujours en raison de la faible concentration de certaines espèces la constante. K(B_{II}) X/Y devra parfois être estimée à partir d'une analyse préliminaire et distincte du sous système RBX₂/RBY₂.

Les attributions retenues pour caractériser les différentes espèces apparaissant dans cette étude sont rassemblées dans le tableau I. Les remarques que l'on peut faire à propos de ces attributions seront rapportées au cours de l'étude individuelle de chacun des systèmes.

I REDISTRIBUTIONS DES GROUPEMENTS NMe2/SMe

A) SYSTEME PrB(NMe₂)/PrB(SMe)₂*

Cinq mélanges dont la composition initiale est indiquée dans le tableau (II) par la valeur du rapport R = $\frac{(SMe)}{(B \text{ total})}$ ont été chauffés à 70°C pendant 24 heures. L'évolution vers l'état d'équilibre a été suivie en R.M.N. ¹H; en particulier la formation de l'espèce mixte Pr BNMe₂SMe se traduit par l'apparition d'un pic singulet à 2 p.p.m. attribué aux protons thio-méthyliques et d'un doublet centré à 2,75 p.p.m. dans la zone des protons N-méthyliques. Le dédoublement de ce signal est caractéristique des protons N(CH₃)₂ dans les com-

posés mixtes $X = B - N < CH_3$ et est en relation avec le caractère multiple $R < CH_3$ de la liaison bore-azote. Compte tenu du léger recouvre-

ment de ce doublet avec le signal des protons $PrB(NMe_2)_2$, l'analyse des mélanges a été réalisée à partir de l'intégration des pics des protons $:PrB(NMe_2)_2$, $Pr BNMe_2 SMe_e et PrB(SMe_2)_2$ dont les valeurs des déplacements chimiques ont été rassemblées dans le tableau (II). Les concentrations obtenues (Cr) peuvent dans chaque cas être comparées (tableau II) à celles qui résulteraient d'une redistribution statistique (Cs). Nous y avons aussi fait figurer les valeurs des concentrations (C_c) calculées à partir des valeurs des moyennes pondérées des constantes K(B_{II}). Les compositions de ces mélanges ont pu être vérifiées à partir des données de la spectrographie de R.M.N. ¹¹B car dans ces systèmes les signaux de résonance des noyaux ¹¹B de ces 3 espèces sont parfaitement séparés (tableau I). L'examen du tableau (II) montre que les concentrations des 3 espèces

^{*} Dans ce travail chaque système sera désigné par ses deux constituants initiaux.

•	ડ ¹¹ B	޹н			Տ ¹⁹ F	
Composés		NMe ₂	0Me	She		
RB(NMe ₂) ₂	34,0	2,66				
RB(OMe) ₂	31,5		3,50			
RB(SMe)2	71,4			2,20		
RBC12	62,3					
RBF2	28,2				3,3	
RB(NMe ₂)(OMe)	31,8	2,55 2,59	3,47			
RB(NMe ₂)(SMe)	45,0	2,70 2,79		2,00		
RB(NMe ₂)C1	39,1	2,84 2,90				
RB(NMe ₂)F	30,0	2,62			-18,0	
RB(OMe)F	31,0		3,54		-10,0	
R2BNMe2	46,0	2,74				
R ₂ B0Me	52,0		3,63			
R ₂ BSMe	78,2			2,15		
R ₂ BC1	77,2					
7 ^{BF}	59,6				46,0	

ne peuvent être atteintes simultanément que dans un domaine de composition limité (R=1). Ceci est dû au fait que l'espèce mixte PrBNMe₂SMe est très favorisée par rapport aux deux autres.

Il en résulte que la constante

$$K(B_{II}) \ NMe_2/SMe = \frac{(PrBNMe_2 SMe)^2}{PrB(NMe_2)_2} \ PrB(SMe)_2$$

présente une valeur $(4 \stackrel{+}{-} 2)10^2$ très supérieure à la valeur statistique $(K_s = 4)$. Pour la variation d'enthalpie correspondante on obtient :

$$\Delta H = -\frac{RT}{2} \log \frac{K(B_{II})}{K(B_{II})_{s}} = -(1,6 \pm 0,3) \text{ K cal. mole}^{-1}$$

(pour une redistribution au hasard $\Delta H_s = 0$)

Comme l'indiquent les données rassemblées dans le tableau III notre analyse a porté sur 5 mélanges Pr₂BNMe₂ - PrB(SMe)₂ ainsi que sur 2 mélanges

R P	$=\frac{(SMe)}{(Bt)}$		PrB(NMe ₂)2	PrB(NMe)(Sii	e) PrB(SMe) ₂	
0,93	0,92	C,	8,1	91,9	-	
	•	ເ່	10,5	87,0	2,5	
		۲	29,2	49,7	21,1	
0,99	0,96		3,5	96,5	_	
			7,5	88,9	3,6	
			27,1	49,9	23,0	
1,01	1,02		4,0	89,9	6,1	
			4,3	89,4	6,3	
			24,0	50,0	26,0	
1,01	1,05		1,3	90,8	7,9	
			3,2	88,5	8,3	
			22,6	49,9	27,5	
1,20	1,16		2,0	79,5	18,5	
			1,3	81,4	17,3	
			17,7	48,7	33,6	
1,24	1,27		0,6	71,0	28,4	
-			0,6	71,7	27,7	
			13,3	46,4	40,3	
R p d R p d e d	léterminé léterminé	par par	r pesée r intégrat	ion des s	surfaces des p	ics de R.M.N.

TABLEAU II - FrB(NMe₂)₂/PrB(SMe)₂ (70 °C)

R =	(SMe) (Bt) e	PrE(SMe) ₂	PrB SMe №1	e ₂ Prô(NMe) ₂	Pr ₂ BSMe	Pr2 ^{BNMe} 2	
0,32*	0,30		29,3	40,0		30,7	
		-	29,9	40,1	-	30,0	
		2,2	20,3	47,5	5,3	24,7	
0,40	0,33	7,5	12,4	-	5,7	74,4	
		9,5	10,5	-	10,6	69,4	
		2,2	8,9	8,9	26,7	53,3	
0,46 [*]	0,44	0,6	43,0	10,7	. –	45,6	
		0,6	44,7	8,7	-	45,9	
		4,8	22,6	26,6	13,7	32,3	
0,48	0,41	10,2	13,8	-	/,1	68,9	
		12,4	11,6	- '	11,6	64,4	
		3,6	11,4	9,0	29,4	46,6	
0,82	0,76	23,4	18,2	· _	10,5	47,9	
		26,8	14,2	-	14,2	44,8	
		13,9	20,0	7,1	34,3	24,7	
0,88	0,83	26,8	17,5	-	12,1	43,6	
		29,6	14,4	-	14,4	41,6	
		16,4	20,9	6,7	34,2	21,8	
1,14	1,10	39,6	15,5	-	14,8	30,1	
		40,5	14,5	-	14,5	30,5	
		27,7	22,7	4,6	31,9	13,1	

TABLEAU III - PrzBNMe, /PrB(SMe), (70 °C)

* Mélanges réalisés à partir de PrB(NMe₂)₂/Pr₂BSMe

 $\begin{array}{l} \Pr{B(\text{NMe}_2)_2} - \Pr_2{B\,\text{SMe. La détermination des concentrations des cinq espèces}\\ \text{susceptibles d'être présentes dans ces mélanges a été réalisée en utilisant les}\\ \text{données de la R.M.N.} \ {}^{11}\text{B} \text{ pour trois d'entre elles : } \Pr_2{B\,\text{SMe}}, \Pr{B(\text{SMe})_2} \text{ et}\\ \Pr{B(\text{NMe}_2)_2} \text{ et de la R.M.N} \ {}^{11}\text{H} \text{ pour les deux autres : } \Pr_2{B\,\text{IMe}_2} \text{ et} \Pr{B\,\text{NMe}_2\text{SMe}};\\ \text{en effet pour ces dernières les signaux des protons N-méthyliques, respectivement}\\ \text{un singulet et un doublet, sont bien séparés.} \end{array}$

On constate que, selon la composition initiale des mélanges, soit l'espèce $PrB(NMe_2)_2$ soit l'espèce $PrB(SMe_2)_2$ sont en trop faible concentration pour être détectées. Dans ces conditions, la constante $K(B_I/B_{II})NMe_2/SMe$ qui ne peut pas être calculée directement à partir de l'expression :

$$K(B_{I}/B_{II})NMe_{2}/SMe = \frac{(Pr_{2}BNMe_{2})^{2}(PrB(SMe)_{2})}{(PrB(NMe_{2})_{2})(Pr_{2}BSMe)^{2}}$$

doit être mise sous la forme :

$$K(B_{I}/B_{II})NMe_{2}/SMe = \frac{(Pr_{2}BNMe_{2})^{2}(PrB(SMe)_{2})^{2}}{(PrBSMe_{2})^{2}(Pr_{2}BSMe)^{2}} \cdot K(B_{II})$$

ce qui conduit à la valeur $(2 \pm 1).10^4$ qui mettement supérieure à l'unité, traduit une tendance prononcée du groupement NMe₂ à se fixer sur le centre bore le plus alkylé R₂B₄.

II REDISTRIBUTION DES GROUPEMENTS NMe2 et OMe

A) SOUS SYSTEMEPrB(NMe₂)/PrB(OMe)₂

L'état d'équilibre pour les 6 mélanges examinés a été atteint après un temps de chauffe de trois jours à 70°C.

La détermination des concentrations de chacune des trois espèces a été réalisée par intégration des trois signaux présents dans le spectre de RMN ¹H : deux correspondent aux protons alkoxyliques des composés $PrB(OMe)_2 et PrB(NMe_2)OMe$, le troisième résulte du recouvrement du singulet et du doublet attribuable à la résonance des protons N -méthyliques des espèces $PrB(NMe_2)_2$ et $PrBNMe_2OMe$.

La composition des mélanges est décrite dans le tableau (IV); on remarque immédiatement une forte proportion de l'espèce mixte par rapport au cas statistique. Cette tendance se traduit au niveau de la constante $K(B_{II})NMe_2/OMe$ par une valeur élevée soit (3,6 ± 0,2)10².

B) SYSTEMEPrB(NMe₂)₂/Pr₂BOMe.

Les compositions initiales des 6 mélanges exarinés sont données dans le tableau (V) pour les valeurs du rapport R = $\frac{(NMe_2)}{(RB < +R_2B-)}$ avec 0 < R < 2

Afin d'explorer tout le domaine de composition de ce système, nous avons préparé des mélanges des 2 composés Pr₂BNMe₂ et PrB(OMe)₂, mais aucune évolution sensible n'a pu être obtenue à 70°C, même après un temps de chauffe de 1 mois.

Dans les mélanges examinés, 5 espèces sont susceptibles d'être présentés, 4 d'entre elles donnent des signaux parfaitement séparés en RMN 1 H : PrB(OMe)₂,

R =	$\frac{(OMe)}{(B_t)}$	PrB(OMe) ₂	PrB(OMe)(NMe ₂)	PrB(NMe ₂) ₂	
0,90	0,91	_	91,4	8,6	
		1,9	87,1	11,0	
		20,7	49,6	29,7	
0,96	C,99	4,2	90,5	5,3	
		4,3	90,4	5,3	
		24,5	50,0	25,5	
1,02	1,09	11,4	86,6	2,0	
		10,9	87,I	2,0	
		29,7	49,6	20,7	
1,11	1,11	12,8	85,6	1,6	
		12,6	85,7	1,7	
		30,8	49,4	19,8	
1,20	1,20	21,1	78,1	0,8	
		20,8	78,3	0,9	
		36,0	48,0	16,0	
1,53	1,56	56,4	43,6	-	
		56,1	43,8	0,1	
		60,8	34,3	4,9	

<u>TABLEAU_IV</u> = $PrB(OMe)_2/PrB(NMe_2)_2$ (70 °C)

 \Pr_2 BOMe, \Pr_BNMe_2 OMe et \Pr_2BNMe_2 . Comme pour le système précédent, on observe le recouvrement des signaux (singulet et doublet) des protons N-méthyliques des espèces diaminées et mixtes. L'examen du tableau (V) montre que l'espèce diaminée est trèsdéfavorise; cependant, dans ce cas, le calcul de la constante K(B_{II})NMe₂/OMe est réalisable pour 1 mélange (R = 0,91). La valeur obtenue (3,4.10²) est en bon accord avec celle déduite précédemment de l'étude du sous système.

Pour la constante inter-système calculée à partir de l'expression :

$$K(B_{I}/B_{II})NMe_{2}/OMe = K(B_{II}) \frac{\left(Pr_{2}BNMe_{2}\right)^{2} \left(PrB(OMe)_{2}\right)^{2}}{\left(PrBNMe_{2}OMe\right)^{2} \left(Pr_{2}BOMe\right)^{2}}$$

on obtient $K(B_I/B_{II})NMe_2/OMe = (6 \pm 1)10^6$. Cette forte valeur met à nouveau en évidence l'affinité préférentielle du groupement NMe₂ pour le centre R₂B-lorsqu'il se trouve en compétition avec des groupements alkoxyliques.

<u>TABLEAU V</u> - $PrB(NMe_2)_2/Pr_2BOMe$ (70 °C)

R =	$\frac{(\text{NMe}_2)}{(B_t)}$	PrB(11Me2)2	PriXiMe_)(014e)	Pre(OMe	Pr2 ^{BNMe} 2	Pr2 ^{BOMe}	
0,64	0,62	-	1,5	30,2	60,3	8,0	
		-	2,3	29,7	61,7	6,3	
		7,5	16,0	8,5	33,0	35,0	
0,66	0,68	-	4,9	29,1	63,0	3,0	
		-	4,9	29,1	63,1	2,9	
		8,8	17,0	8,2	33,5	32,5	
0,67	0,69	· _	7,6	29,5	61,0	1,9	
		-	12,0	25,0	62,0	1,0	
		10,8	18,4	7,8	34,0	29,0	
0,82	0,86	· _	24,2	14,2	61,6	-	
		-	17,5	21,5	60,4	0,6	
		12,3	19,2	7,5	34,2	26,8	
0,91	0,90	0,3	32,2	10,2	57,3	-	
		0,1	28,9	14,0	56,8	0,2	
		15,6	20,6	6,8	34,3	22,7	
1,24	1,19	18,7	34,7	-	46,6	-	
-		8,7	44,7	0,6	46,0	-	
		26,6	22,6	4,8	32,3	13,7	

265

Les représentations graphiques de l'évolution des concentrations calculées (C_c) et statistiques (C_s) en fonction de R représentées sur la figure 1, rendent bien compte du comportement observé et notamment de la prédominance de l'espèce monoaminée.

III REDISTRIBUTION DES GROUPEMENTS NMe2 ET F

A) SYSTEME PrB(NMe₂)₂/BuBF₂ *

La réaction est exothermique et l'équilibre est atteint instantanément sans chauffage externe. Pour des mélanges équimoléculaires (R = 1), seul le signal de l'espèce mixte RBNMe₂F apparaît dans les spectres de RMN ¹H et ¹⁹F. En admettant que PrB(NMe₂)₂ < 1 % et (BuBF₂) < 1 % on peut attribuer à la constante KB_{II} une valeur limite, soit K(B_{II})F/NMe₂ > 10⁴

 $R = \frac{(F)}{(B_{t})}$ RBF(NMe2) RB(NMe2)2 RBF, R₂BF R'2BNMe, 0,66 20,6 13,3 7,9 58,2 0,63 16,9 16,4 16,4 50,3 -8,3 16,7 8.3 33,3 33,3 25,5 15,0 18,2 41,3 0,82 0,84 23,5 17,5 17,5 41,5 7.2 . 34.3 24.7 13,9 19,9 0,90 0,92 29,3 15,2 18,3 37,2 27,1 17,9 17,9 37,1 6,5 20,9 17,3 21,2 34,1 0,96 0,96 30,2 17,3 18,5 33,9 18,0 30,0 18,0 34,0 20,2 21,9 5,9 33,7 18,3 1,00 20,5 30,3 1,03 31,0 18,2 33,0 18,0 _ 18,0 31,0 23,3 22,3 5,4 33,1 15,9

TABLEAU VI - R_2BNMe_2/RBF_2 (R = Bu ou Pr). (33,5 °C)

B) SYSTEME BuBF 2/Pr2BNMe2

L'examen du tableau VI décrivant la composition des cinq mélanges étudiés montre immédiatement que l'espèce diaminée est encore très défavorisée. Effectivement sa présence n'a pas pu être detectée dans les spectres de R.M.N ¹H et ¹¹B. L'analyse de ces mélanges a été réalisée en combinant les données des R.M.N. ¹¹B et ¹H en raison du recouvrement des signaux de résonance des noyaux ¹¹B des composés RBF₂ et RB NMe₂F.

La constante intersystème a pu être obtenue à partir de l'expression :

$$K(B_{I}/B_{II})NMe_{2}/F = K(B_{II}) - \frac{(Pr_{2} B NMe_{2}^{2})(Bu BF_{2})^{2}}{(RBFNMe_{2})^{2}(Pr_{2}BF)^{2}} \text{ soit } K(B_{I}/B_{II})NMe_{2}/F > 10^{5}$$

Ainsi en présence du groupement Fluor, le groupement NMe_2 conserve une forte affinité pour le centre R_2B . L'analyse du système $RB(NMe_2)_2/R_2BF$, n'a pas été réalisée en raison des difficultés à obtenir le composé Bu_2BF exempt de traces de l'espèce difluorée.

IV REDISTRIBUTION DES GROUPEMENTS NMe2 et C1

A) SYSTEME Pr B(NMe₂)₂/Pr BCl₂

Nous avons dû réaliser les mélanges à -50°C car la réaction est très exothermique; ceci est en général l'indice d'un fort écart par rapport à une redistribution statistique. Effectivement même pour les mélanges caractérisés par des valeurs du rapport R = $\frac{(C1)}{(B \text{ total})}$ voisines de l'unité seule l'espèce mixte a été (B total) mise en évidence à l'équilibre, à la température de la sonde du spectrographe de R.M.N.¹H (33°C). Comme dans le cas du système RB(NMe₂)₂/RBF₂, nous pouvons estimer que la constante K(B₁₁)NMe₂/ C1 est supérieure à 10⁴.

B) SYSTEME Pr B(NMe₂)₂/Pr₂BC1

Comme précédemment, la réaction est exothermique. Les compositions des quatre mélanges déduites de l'analyse des spectres de R.M.N ¹¹B sont détaillées dans le tableau VII. Dans le domaine de composition considéré, les espèces $PrBCl_2$ et $PrB(NMe_2)_2$ sont, dans tous les cas, en trop faible concentration pour être mises en évidence. Les données ainsi obtenues sont insuffisantes pour pouvoir calculer directement la constante intersystème. La même remarque s'applique au système $Pr_2BNMe_2/PrBCl_2$; les essais effectués ayant montré que dans tous les cas, trois espèces seulement pouvaient être observéessimultanément. Dans ces conditions la constante intersystème a dû être estimée à partir de la relation :

$$K(B_I/B_{II})NMe_2/C1 = K(B_I/B_{II})NMe_2/OMe.K(B_I/B_{II})OMe/C1$$

^{*} Le composé BuBF₂ (Eb. = 36°C) a été préféré au composé PrBF₂ à cause de la trop grande volatilité de ce dernier (Eb. = 10°C).

R =	$\frac{(\text{IME}_2)}{(Bt)}$	PrB(NMe ₂) ₂	PrB(NMe ₂)Cl	ዮዌርኒ	Pr2 ^{BNMe} 2	Pr ₂ BC1	
0,62	0,63	_	31,4	-	31,5	37,1	
		-	30,3	1,2	31,0	37,5	
		7,2	15,7	8,6	32,8	35,7	
0,63	0,60	-	31,6	-	28,3	40,1	
		-	30,3	1,2	31,0	37,5	
		7,2	15,7	8,6	32,8	35,7	
0,70	0,74	-	. 37,1	-	37,2	25,7	
		-	34,1	0,9	35,2	29,8	
		9,4	17,5	8,1	33,7	31,3	
1,02	1,00	-	51,0	-	49,0	-	
		0,3	49,7	-	49,7	0,3	
		22,2	22,2	5,6	33,3	16,7	

TABLEAU VII - $PrB(NMe_2)_2/Pr_2BC1$ (33,5 °C)

En attribuant à la constante $K(B_I/B_{II})$ OMe/Cl la valeur 9,1 $10^{-4}(2)$ on obtient $K(B_I/B_{II})$ NMe₂/Cl $\approx 10^3$

Comme l'indique le tableau VII, un bon accord entre valeurs expérimentales et calculées a pu être obtenu en prenant comme paramètresinitiaux du calcul

$$K(B_{II}) NMe_2/C1 = 10^6$$

 $K(B_I/B_{II}) NMe_2/C1 = 10^3$

Les 2 résultats traduisent d'une part des écarts importants par rapport au comportement statistique, d'autre part indiquent que l'affinité du groupement NMe_2 pour le centre le plus alkylé R_2B est supérieure à celle manifestée habituellement par le groupement chlore pour ce même centre.

DISCUSSION

Nous avons confronté, successivement, le groupement NMe₂ aux substituants SMe, OMe, F et Cl en présence des centres RB< et R_2B . Nous avons pu montrer que dans tous les cas il conservait une affinité préférentielle pour le centre le plus alkylé R₂B. Cette affinité est parfois très prononcée ce qui entraîne des déplacements importants des équilibres par rapport au cas statistique et, par voie de conséquence une certaine imprécision sur les valeurs des constantes correspondantes.

Cependant les valeurs des constantes intersystème peuvent être comparées (tableau VIII) à celles des "constantes d'affinité" $Af(NMe_2)B_I$ calculées à partir des concentrations en liaisons $\binom{4c}{2}$.

TABLEAU VIII :

X	SMe	OMe	F	C1
K(B _I /B _{II})NMe ₂ /X	$(2 \pm 1).10^4$	$(6 \pm 1).10^{6}$	> 10 ⁵	= 10 ³
Af(NMe ₂)B _I	3,1*	6,1	3,9	1,1

* moyenne arithmétique des constantes des mélanges.

On peut constater que dans tous les cas. la constante $Af(NMe_2)B_I$ est supérieure à l'unité, c'est-à-dire à la valeur statistique correspondante, ce qui confirme l'affinité préférentielle du groupement NMe₂ pour le centre R_2B -.

A partir des résultats obtenus ici et au cours d'un travail précédent⁽²⁾, nous pouvons proposer l'échelle d'affinité pour le centre R_2B - suivante :

NMe₂ > C1 > F > OMe et NMe₂ > SMe

Il semble que dans le cas des deux centres bore envisagés, la variation des effets stériques et de répulsion électronique au niveau des substituants puisse rendre compte d'une manière assez satisfaisante de l'évolution observée. Cependant, comme l'ont montré MOEDRITZER ⁽⁶⁾ et RIESS ⁽⁷⁾ lorsque ces mêmes substituants s'échangent sur des centres Me₃Si- et Me₂Si< l'affinité du groupement fluor pour le centre Me₃Si- évolue différemment soit :

Ces observations tendent à montrer que l'influence des centres (taille, état d'hybridation, électronégativité) doit être prise en considération et ce, d'autant plus que la taille de l'atome central est plus importante.

PARTIE EXPERIMENTALE

Les composés $PrB(NMe_2)_2$, Pr_2BNMe_2 , $PrB(SMe)_2$, $PrB(OMe)_2$, Pr_2BOMe , $BuBF_2$, Pr_2BCl et $PrBCl_2$ ont été préparés suivant les méthodes déjà décrites ⁽⁸⁾. Les mélanges destinés aux mesures ont été réalisés par pesée directe des ingrédients introduits successivement dans les tubes de RMN sous atmosphère d'argon. Les tubes remplis au maximum afin de limiter le volume de la phase vapeur ont été scellés. L'état d'équilibre a été obtenu soit par chauffage à 70°C soit à la température de la sonde des spectrographes de RMN. Les sepctres des mélanges ont été réalisés à l'aide des spectrographes Perkin-Elmer R 10 (¹¹B) et R 12 (¹H). Les déplacements chimiques mentionnés dans le tableau I, sont repérés par rapport à $(CH_3)_4Si$ interne (δ^1H) , $(C_2H_5)_20.BF_3$ ($\delta^{11}B$) et CF_3COOH ($\delta^{19}F$).

L'intégration des pics de résonance réalisée soit avec un analyseur de courbes soit par pesée a permis d'atteindre dans la plupart des cas examinés, un jeu de plusieurs valeurs pour chacune des constantes $K(B_{II})$ et $K(B_{I}/B_{II})X/Y$. Nous avons retenu, suivant la procédure de Van WAZER et Coll.^(4a, 4b) leur valeur moyenne pondérée affectée de l'écart type.

Nous avons vérifié que ni la présence d'un solvant, ni sa nature ne modifiaient le comportement des équilibres.

BIBLIOGRAPHIE

- 1 J.P. Costes, G. Cros et J.P. Laurent, Can. J. Chem., 54 (1976), 2996.
- 2 J.P. Costes et G. Cros, Bull. Soc. Chim. Belg. (sous presse).
- 3 J.P. Costes, G. Cros et J.P. Laurent, Org . Magn. Res, 7 (1975), 78.
- 4 a) J.R. Van Wazer. Am. Scientist, 50 (1962), 450
 - b) J.R. Van Wazer et K. Moedritzer, J. Inorg. Nucl. Chem., 26 (1964), 737.
 - c) J.P. Costes, G. Cros et J.P. Laurent, J. Inorg. Nucl. Chem., 40 (1978), 829.
- 5 H. Watanabe, K. Nagasawa, T. Totani, T. Yoshizaki, T. Nakagawa,
 0. Ohashi et M. Kubo. Ad. Chem. Ser., 42 (1964), 108.

6 - K. Moedritzer, J. Organometal.Chem.,6 (1968), 171.

7 - a) S.C. Pace, J.C. Elkaim et J.G. Riess, J. Organometal. Chem., 56 (1973), 141.

b) J.G. Riesset S.C. Pace, Inorg. Chim. Act, 9 (1974), 61.

8 - G. Cros, Thèse de Doctorat d'Etat, Toulouse 1971.